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ABSTRACT  

Aiming at the problem of differentiated cultivation strategies for different grape varieties, the AF-Swin 

Transformer model is proposed in this study. Firstly, Focal Loss is used to effectively tackle data imbalance in 

grape leaves. Secondly, the AdamW optimizer is selected to better control model complexity and improve 

generalization. The results show that the training accuracy of AF-Swin Transformer model is 7.87 percentage 

points higher than that of the original Swin Transformer model. Precision and recall improved by 4.4 and 4.3 

percentage points, respectively. This study enables accurate automated variety monitoring within vineyard 

cultivation systems, assisting growers in implementing targeted cultivation strategies. 

 

摘要 

针对不同葡萄品种栽培策略存在差异化问题，本研究提出了 AF-Swin Transformer 模型。首先，引入 Focal Loss,
有效应对葡萄叶片数据不平衡，其次，选用 AdamW 优化器，更好地控制模型复杂度并提高泛化能力。结果表
明，AF-Swin Transformer 模型的训练集准确比原始 Swin Transformer 模型提高了 7.87 个百分点；精准率和召
回率分别提高了 4.4 和 4.3 个百分点。本研究能够在葡萄园中种植系统中实现准确的自动化品种监测，帮助种
植者实施有针对性的种植策略。 
 

INTRODUCTION 

 Effective recognition of grape leaf varieties can assist grape growers in managing their crops more 

conveniently and making precise decisions (Cecotti et al., 2020). During the development and maturation of 

grapes, they are susceptible to various diseases. Understanding the susceptibility of specific leaf varieties to 

certain diseases and their effective identification will enhance targeted prevention and treatment of grape 

diseases (Pereira et al., 2019). Traditional methods for identifying grape varieties primarily depend on manual 

observation. While this method is straightforward, it is often affected by subjective factors and environmental 

changes, resulting in insufficient accuracy and stability in identification. Therefore, achieving automated 

identification of grape varieties through leaf image analysis will provide growers with more convenient 

management tools, helping them make more precise decisions and ultimately enhance the efficiency and 

competitiveness of the entire grape industry. 

 In recent years, the rapid development of deep learning technologies and computer vision has brought 

new solutions for plant leaf recognition (Patricio et al., 2018). Convolutional Neural Networks (CNNs) such as 

AlexNet (Ni et al., 2021), MobileNet (Zou et al., 2024), and ResNet (Yang et al., 2023) can automatically extract 

image features (Pushpanathan et al., 2021) and have demonstrated superior performance in the classification 

tasks of different leaf varieties from the same plant. Deep learning has particularly become an effective tool for 

leaf feature extraction and variety recognition.  
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 Yin et al. employed the GoogLeNet model to recognize leaf images of 11 camellia plant varieties, 

achieving an overall accuracy of 94.1% (Yin et al., 2023). Lin et al. used ResNet50 for variety recognition of 9 

types of Wuyishan Fujian tea leaves, with an accuracy rate reaching 96.04% (Lin et al., 2021). Sun et al. 

conducted research on the recognition of southern medicinal leaf varieties in complex backgrounds using an 

improved EfficientNetv2 model, achieving an accuracy rate of 99.12% (Sun et al., 2023). Chen et al. utilized a 

Multi-Attention Fusion Convolutional Neural Network (MAFNet) for recognizing apple leaf images, with the 

model achieving an accuracy rate of 98.14% (Chen et al., 2022). Tavakoli et al. applied Convolutional Neural 

Networks (CNNs) for the variety recognition of 12 types of legumes, where the model showed good recognition 

performance on a dataset of legume leaf back images, achieving an accuracy rate of 95.86% (Tavakoli et al., 

2021). Dong et al. used an improved RegNet model to recognize varieties of 118 mature camellia leaves that 

grew under natural light conditions and achieved an overall accuracy of 93.7% (Dong et al., 2024). Su et al. 

used an improved ResNet50 to recognize datasets of 12 types of wine grape leaf images collected at different 

growth stages, achieving an accuracy of 88.75% (Su et al., 2021). Zhang et al. improved the VOLO-D1 model 

by integrating the YOLO object detection mechanism and proposed the YOLO-VOLO-LS method, which 

significantly enhanced the variety identification accuracy of lettuce at the early SP growth stage, achieving a 

test accuracy of 93.452% (Zhang et al., 2022). Islam et al. applied transfer learning based on the YOLO model 

to successfully recognize and localize Bangladeshi plant leaves, attaining a classification accuracy of 96% 

(Islam et al., 2019). Das et al. employed the YOLOv7 model to improve the identification and localization of 

medicinal plant leaves in complex environments, providing technical support for automated recognition in the 

herbal medicine industry (Das et al., 2024). Sennan et al. proposed a convolutional neural network (CNN) for 

spinach classification, achieving a classification accuracy of 97.5% on a dataset comprising four leaf categories 

(Sennan et al., 2022). Kaur et al. enhanced DenseNet-121 for grapevine variety identification, reaching 96% 

classification accuracy on high-resolution images of five grape leaf types (Kaur et al., 2024). Maulana et al. 

conducted a comparative analysis of various CNN models for grapevine leaf classification, with DenseNet and 

MobileNetV2 both achieving 99% accuracy, thereby improving classification precision and model robustness 

(Maulana et al., 2024). 

 Although the deep learning models mentioned above have achieved certain results in crop leaf variety 

recognition, research on grape leaf variety identification remains limited due to imbalanced sample sizes 

arising from varying rarity and collection difficulties, and the widely used YOLO model exacerbates this by 

requiring labor‑intensive data annotation. This study focuses on mature grape leaves that have newly sprouted 

for 30 to 60 days in spring and addresses this issue by proposing the AF-Swin Transformer model. We utilize 

the AdamW optimizer, which incorporates weight decay. AdamW applies the weight decay term independently 

during parameter updates, separating it from the learning rate adjustments, which allows for a more precise 

implementation of weight decay. This approach effectively manages model complexity, reduces overfitting risk, 

and enhances stability. Moreover, the Focal Loss function is introduced to tackle the sample imbalance problem. 

Focal Loss mitigates the loss gradients of easily recognizable samples by introducing a modulation factor, 

encouraging the model to focus more on difficult-to-recognize samples. This enhances the model's ability to 

recognize rare varieties and improves its learning capacity for hard-to-identify samples, enabling the model to 

better recognize subtle differences and ultimately increase overall accuracy. 

 Therefore, the AF-Swin Transformer model proposed in this paper exhibits greater robustness and 

accuracy in recognizing grape leaf varieties, providing a scientific foundation for their identification. 

 

MATERIALS AND METHODS 

 

Sample dataset 

 All the leaf samples in this study were collected at the Fruit Tree Research Institute in Taigu District, 

Jinzhong City, Shanxi Province. A total of 5,516 images were collected using a Huawei Mate 40 smartphone, 

taken from various angles and time periods in a natural environment. The distribution of the number of samples 

for each variety is shown in Figure 1.  

 The leaves were collected from the upper-middle part of the grapevine branches, and they were healthy, 

mature leaves that had newly sprouted for 30 to 60 days in spring. At this stage, the leaves exhibit standard 

morphology, with clear leaf lobes, leaf shape, and visible venation structures. The image resolution is 

3024x4032, the image format is JPEG, and the color mode is RGB.  

  

 Figure 2 displays sample images of 26 different grape varieties. 
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Fig. 1 - Distribution of the number of grape leaf varieties 

 

      
A11-167 A11-168 A11-169 A11-170 A11-171 A11-172 

      
A11-173 A11-174 A11-175 A11-176 A12-177 A12-178 

      
A12-179 A12-180 A12-182 A12-183 A12-184 A12-185 

      
A12-186 A14-209 A14-210 A14-211 A14-212 A14-213 

  

    

A14-214 A14-215     
Fig. 2 - Examples of grape leaf samples from different varieties 

 

Data augmentation 

 To enhance the recognition capability of the network model, four data augmentation methods—random 

rotation, flipping, brightness adjustment, and adding Gaussian noise—were randomly combined and artificially 

expanded during training to create a training dataset. The number of images for each variety after data 

augmentation is shown in Table 1.  
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 This image augmentation technique is versatile and computationally efficient, effectively training deep 

learning models. The dataset was divided into training, validation, and testing sets in an 8:1:1 ratio. A schematic 

diagram of the grape leaf data augmentation (Lacate) is illustrated in figure 3. Figure 3(a) shows the original 

image, (b) displays the flipped image, (c) demonstrates the addition of Gaussian blur, (d) depicts an increase 

in brightness, (e) shows the rotated image, and (f) illustrates a decrease in brightness. 

      
(a)Original  
Image 

(b) Flip (c) Gaussian  
Blur 

(d) Increase  
Brightness 

(e)Rotate (f) Decrease  
Brightness 

Fig. 3 - Data augmentation diagram (Lacate) 

 
Table 1 

Image dataset of grape leaf varieties 

Variety No. Species Total quantity Training set Validation set Test set 

A11-167 Suhaike 300 240 30 30 

A11-168 Baolgal 380 304 38 38 

A11-169 Australia Non-

Nuclear No. 4, 

White Rose 

410 328 41 41 

A11-170 Baiyou Malake 420 336 42 42 

A11-171 Bigqi Husa 440 352 44 44 

A11-172 October 370 296 37 37 

A11-173 Baisha Ani 370 296 37 37 

A11-174 Calaido 360 288 36 36 

A11-175 Saingiovese 

Graso 

370 296 37 37 

A11-176 Delguri Mike 490 392 49 49 

A12-177 Yiqikema 510 408 51 51 

A12-178 Dalbash 590 472 59 59 

A12-179 Aliwalne 360 288 36 36 

A12-180 Bayangxilie 360 288  36 

A12-182 Kalas Rose 390 312 39 39 

A12-183 Victory 380 304 38 38 

A12-184 Baiwujium 300 240 30 30 

A12-185 Heisther 360 288 36 36 

A12-186 Kalas 50 40 5 5 

A14-209 Lacete 370 296 37 37 

A14-210 Aibutri 370 296 37 37 

A14-211 Su-38 370 296 37 37 

A14-212 Shalele 

Pandas 

380 304 38 38 

A14-213 Baikakuer 380 304 38 38 

A14-214 Dashlei 380 304 38 38 

A14-215 Shabash 390 312 39 39 

 

Improved swin transformer model 

 The Swin Transformer model addresses image tasks through a hierarchical design by dividing the input 

image into multiple windows, treating the elements within each window as independent tokens, and performing 

linear embedding to create initial feature representations. This mechanism not only enhances the model's 

capacity to process large images but also effectively avoids the computational and memory limitations that 

traditional Transformers face when dealing with high-dimensional inputs.  



Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 
 

1117 

In several stages, the Swin Transformer blocks progressively extract features and adjusts spatial 

resolution, with each stage further integrating information through a "Patch Merging" operation, which reduces 

computational load and increases the number of channels. The key aspect of the Swin Transformer is the 

combination of a sliding window multi-head self-attention mechanism (SW-MSA) and a multi-layer perceptron 

(MLP), which enhances the model's ability to learn local and global features. Additionally, layer normalization 

(LN) operations ensure the model's stability and training effectiveness. 

 
Fig. 4 - Structure diagram of the Swin Transformer model 

 
 Due to the imbalance of sample sizes among different grape leaf varieties, this study introduces the 

Focal Loss function. Focal Loss assesses the difficulty of each sample based on the model's predicted 

probabilities. It dynamically adjusts the model's focus by reducing attention to easily distinguishable samples 

during training, allowing the model to concentrate more on harder-to-distinguish samples. Unlike the cross-

entropy loss function, Focal Loss introduces a tunable parameter that adjusts the model's focus between easily 

recognizable and difficult-to-recognize samples. When the value of γ is low, the model pays more attention to 

easily recognizable samples; when γ is high, the model focuses more on difficult-to-recognize samples. The 

formula for Focal Loss is as follows: 

( ) ( )
γ

FocalLoss = -α 1- p log pt t t  

 In the equation, the difficulty of recognition is reflected by pt. When pt is larger, it indicates a higher 

confidence level in identification, suggesting that the sample is easier to distinguish. Conversely, when pt is 

smaller, it indicates a lower confidence level in identification, suggesting that the sample is more difficult to 

distinguish. 

 

Experimental environment 

 The operating system was 64-bit Windows 10, using an Intel(R) Core(TM) i7-14650HX CPU@2.20 GHz 

processor with 32 GB of memory. The graphics card model was the NVIDIA GeForce RTX 4060. All CNN 

models are developed based on the PyTorch framework, with Python 3.8 used as the programming language 

for implementing network model training and testing. The training parameters included an initial learning rate 

of 0.00001, a stochastic gradient descent (SGD) optimizer, a weight decay coefficient of 0.05, and a batch size 

of 4. A cosine learning rate scheduler was utilized for a total of 50 epochs, ensuring a smooth adjustment of 

the learning rate to avoid sudden changes during training. After each iteration, the trained model was saved in 

a folder, and the training logs were recorded. 

 

Model evaluation metric 

 To comprehensively evaluate model performance, several commonly used classification metrics were 

introduced, including Confusion Matrix, Accuracy, Precision, Recall, F1-score, ROC Curve, and AUC. The ROC 

Curve, plotted with the False Positive Rate (FPR) on the x-axis and the True Positive Rate (TPR) on the y-axis, 

represents each point corresponding to a potential classification threshold. The optimal classification threshold 

can be determined by selecting the point on the ROC Curve that is closest to the top left corner. Furthermore, 

the model's performance can be assessed using the Area Under the Curve (AUC), where a larger AUC 

indicates better performance. The formulas for each metric are as follows: 

 ConfusionMatri
F

x
TP FP

N TN

 
=  
 

 (1) 
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In the equation, TP represents the number of samples predicted as positive that are actually positive; FP 

represents the number of samples predicted as positive, but are actually negative; FN represents the number 

of samples predicted as negative, but are actually positive; TN represents the number of samples predicted 

as negative that are actually negative. 

 

RESULTS AND ANALYSIS 
Model training 

 This study evaluated the performance of four convolutional neural network models: Swin Transformer, 

MobileNetV2, MobileNetV3, and ViT for grape leaf recognition. The model training accuracy curves and loss 

change curves are shown in figures 5 and 6; the testing accuracy results are presented in Table 2. 

          
Fig. 5 - Training accuracy change curve           Fig. 6 - Training loss change curve 

  

 From the accuracy change curves, it can be observed that the Swin Transformer model achieves a 

faster improvement in accuracy, ultimately reaching approximately 90.85%. In comparison, MobileNetV2 and 

MobileNetV3 show relatively small changes in overall accuracy, with final accuracies of only 56.39% and 

63.20%, respectively. Additionally, the Swin Transformer converges more quickly and stably than ViT.  The 

loss change curve shows that the Swin Transformer model experiences a rapid decrease in loss during the 

first 30 training epochs and eventually stabilizes. In contrast, MobileNetV2, MobileNetV3, and ViT exhibit 

minimal loss reduction throughout the training process. Therefore, the Swin Transformer outperforms the other 

models in both training accuracy and loss, demonstrating strong robustness and performance advantages. 

 After model training, performance evaluation was conducted using a test dataset collected from real 

orchard environments, which included various natural conditions such as strong front lighting, backlighting, 

and different levels of occlusion. 

Table 2 

Recognition model testing accuracy 

Class Model1 Model2 Model3 Model4 Class Model1 Model2 Model3 Model4 

A11-167 0.967 0.867 0.967 0.5 A12-180 0.806 0.806 0.75 0.556 

A11-168 0.947 0.842 0.868 0.711 A12-182 0.923 0.872 0.897 0.795 

A11-169 0.927 0.878 0.878 0.488 A12-183 0.947 0.895 0.895 0.395 

A11-170 0.929 0.786 0.976 0.667 A12-184 0.867 0.867 0.833 0.667 

A11-171 0.932 0.614 0.932 0.227 A12-185 0.972 0.778 0.917 0.333 

A11-172 0.946 0.919 0.838 0.432 A12-186 1.0 1.0 0.8 0.0 

A11-173 0.919 0.622 0.973 0.162 A14-209 1.0 0.784 0.919 0.514 

A11-174 0.972 0.75 0.917 0.306 A14-210 0.919 0.541 0.811 0.243 
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Class Model1 Model2 Model3 Model4 Class Model1 Model2 Model3 Model4 

A11-175 1.0 0.865 0.973 0.324 A14-211 0.838 0.865 0.919 0.568 

A11-176 0.837 0.857 0.878 0.571 A14-212 0.921 0.947 0.895 0.868 

A12-177 1.0 0.922 1.0 0.627 A14-213 0.789 0.474 0.947 0.289 

A12-178 0.966 0.864 0.966 0.847 A14-214 1.0 0.921 0.974 0.263 

A12-179 1.0 0.833 0.861 0.194 A14-215 1.0 1.0 0.974 0.769 

Note: In this paper, Model1 represents Swin Transformer, Model2 represents MobileNetV2, Model3 represents 

MobileNetV3, and Model4 represents Vision Transformer (ViT). 

 

 The experimental results show that the accuracy of the ViT and MobileNetV2 models is only 50.05% 

and 82.19%, respectively. The accuracy of the MobileNetV3 model is 90.61%, while the Swin Transformer 

model achieved 93.55%, the highest among the four models. It exceeds the accuracies of MobileNetV2, 

MobileNetV3, and ViT by 11.3, 2.94, and 43.50 percentage points, respectively. 

 

Model parameter selection 

 Choose the Swin Transformer as the recognition model to test the impact of different training parameters 

on recognition performance. Keeping other parameters constant, four experimental sets (T1-T4) are 

established, with a batch size fixed at 4. The selected optimizers are SGD and AdamW, with initial learning 

rates of 0.0001 and 0.00001, respectively. The results of the experiments using different parameter selections 

are presented in Table 3. 

Table 3 

Performance of Swin Transformer under Different Parameters 

Test Optimizer Initial Learning Rate Bach Size Accuracy 

T1 SGD 0.0001 4 90.85% 
T2 SGD 0.00001 4 42.42% 
T3 AdamW 0.0001 4 94.21% 
T4 AdamW 0.00001 4 95.46% 

 

 The results indicate that, with the batch size held constant, the AdamW optimizer demonstrated better 

performance compared to SGD, particularly at the lower learning rate (0.00001), where model T4 achieved 

the highest accuracy of 95.46%. For models using the SGD optimizer, a higher learning rate (0.0001) 

contributed to improved model performance, as seen in model T1 with an accuracy of 90.85%, whereas the 

accuracy of model T2 with a lower learning rate significantly dropped to 42.42%. This suggests that for SGD, 

an appropriate increase in the learning rate may help enhance the model's training effectiveness. Overall, 

AdamW demonstrates greater robustness at low learning rates, likely due to its internal mechanisms, including 

momentum and adaptive learning rate characteristics. Therefore, it is recommended to prioritize the AdamW 

optimizer for similar tasks and adjust the learning rate appropriately to find the optimal configuration. 

Based on this analysis, the Swin Transformer model demonstrates the best recognition performance 

with the AdamW optimizer, a batch size of 4, and an initial learning rate of 0.00001. 

 

Improvement Of Loss Function 

 In this study, the loss function of the Swin Transformer model was improved by replacing the original 

standard loss function with the Focal Loss function. To validate the effectiveness of Focal Loss, comparative 

experiments were conducted with Cross-Entropy Loss and Label Smoothing Loss. Focal Loss increases the 

loss gradient for hard-to-classify samples, enhancing the model's learning ability for these challenging samples 

and effectively addressing class imbalance. 

Table 4 

Comparison experiment of different loss functions 

Test Loss Accuracy Precision Recall 

T5 Cross-Entropy Loss 93.55% 93.70% 93.60% 
T6 Label Smoothing Loss 95.87% 95.87% 95.80% 
T7 Focal Loss 98.64% 98.64% 97.90% 

 

 From Table 4, it can be observed that Focal Loss demonstrates the best performance in grape leaf 

variety recognition. In terms of accuracy, the model using Focal Loss achieved an accuracy of 98.72%, which 

is an improvement of 3.26 percentage points over the accuracy using Cross-Entropy Loss and 2.85 percentage 

points over Label Smoothing Loss.  
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 In terms of precision, Focal Loss improved by 2.19 percentage points compared to Label Smoothing 

Loss and by 4.40 percentage points compared to Cross-Entropy Loss. Regarding recall, Focal Loss enhanced 

performance by 2.10 percentage points over Label Smoothing Loss and by 4.30 percentage points over Cross-

Entropy Loss. This improvement can be attributed to Focal Loss's ability to dynamically adjust the loss gradient 

based on sample difficulty, enabling the model to focus more on samples prone to errors or from rare categories 

during training. In contrast, Label Smoothing Loss primarily enhances generalization by reducing the model's 

overconfidence in certain categories, but it does not address class imbalance directly like Focal Loss. Label 

Smoothing Loss may result in insufficient learning of easier categories, potentially impacting overall 

performance. In contrast, Focal Loss ensures balanced learning across all categories by focusing on hard-to-

classify samples. This attention mechanism enhances the model's learning for difficult samples, thereby 

improving overall accuracy. 

 

Confusion Matrix 

 To evaluate the performance of the improved AF-Swin Transformer network model, a test set that was 

not used in the training or validation phases was employed. The confusion matrix generated is shown in figure 

7, where the shading indicates the magnitude of the values; lighter colors represent smaller values, while 

darker colors represent larger values. The horizontal axis represents the true labels, while the vertical axis 

represents the predicted labels. The diagonal elements indicate the number of correctly identified samples. 

 

 
Fig. 7 - Confusion Matrix of AF-Swin Transformer Model 

 

 From figure 7, it can be observed that varieties A11-170, A11-171, and A11-172 exhibited no 

misidentification, indicating that their features are distinct. However, varieties A11-172 and A12-185 were 

misidentified as A11-171. This suggests that the recognition features for varieties A11-172 and A12-185 do not 

differ significantly from those of other varieties, making them susceptible to interference. This may also be 

influenced by shooting angles and lighting conditions. 

 

 

 

 
(a) Swin Transformer  (b) MobileNetV2 



Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 
 

1121 

 

 

 
(c) MobileNetV3  (d) ViT 

Fig. 8 - Confusion Matrix of Different Models 

 

 By comparing figures 7 and 8, which show the confusion matrices of the AF-Swin Transformer, Swin 

Transformer, MobileNetV2, MobileNetV3, and ViT models, it can be observed that the AF-Swin Transformer 

model correctly identifies varieties A11-169, A11-173, and A11-178, while the other models exhibit 

misidentifications for these varieties. This is primarily because Focal Loss enhances the model's ability to learn 

from hard-to-identify samples, addressing the issue of class imbalance, while the weight decay characteristics 

of the AdamW optimizer help improve the model's generalization capability, making it more precise when 

dealing with varieties that have subtle differences. These improvements provide the AF-Swin Transformer with 

a significant advantage in processing varieties with closely similar features. The above analysis demonstrates 

that the proposed improved model, AF-Swin Transformer, has strong robustness in recognizing grape leaf 

varieties. 

 

Grad-CAM Visual Analysis 

 To understand the feature learning of grapevine leaf sample, this study used the Grad-CAM algorithm 

to output the gradient heatmap of the weights in the final convolutional layer and visualize the network model. 

As shown in figure 9, areas that are redder indicate that these features play a more critical role in class 

orientation. 

 

 Original  
Image 

Swin  
Transformer 

MobileNetV3 MobileNetV2 
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transformer 
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Fig. 9 - Grad-CAM Visualization of Recognition Results for Different Convolutional Neural Network Algorithms 
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 Figure 9 compares the heatmaps of the Swin Transformer, MobileNetV2, MobileNetV3, ViT, and AF-

Swin Transformer. The heatmap of the AF-Swin Transformer focuses on both the leaf veins and edges, with a 

broad distribution that covers a significant portion of the leaf area. In contrast, the heatmaps of MobileNetV2 

and MobileNetV3 show higher activity only at the leaf edges, while the Swin Transformer and ViT heatmaps 

primarily focus on regions where leaf veins are located. Therefore, compared to the other four models, AF-

Swin Transformer has a broader and more accurate recognition capability for grapevine leaves. 

 

ROC Curve 

 To evaluate the recognition performance of the models comprehensively, ROC curves were analyzed. By 

comparing the area under the curve (AUC), we can intuitively assess the strengths and weaknesses of different 

models. The ROC curve for the AF-Swin Transformer is shown in Figure 10, while Figure 11 displays the ROC 

curves for the various models. 

 
Fig. 10 - ROC Curve of AF-Swin Transformer 

 

 From figure 10, it can be seen that the AF-Swin Transformer model exhibits good distinguishing 

performance among different varieties. 

 

  
(a) Swin Transformer (b) MobileNetV2 

  
(c) MobileNetV3 (d) ViT 

Fig. 11 - ROC Curves of Different Models 

Note: 
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 To further comprehensively evaluate the performance of the AF-Swin Transformer model, a comparative 

assessment was conducted using evaluation metrics such as precision, recall, F1-score, and AUC value for 

all the models used. As shown in Table 5: 

Table 5 

Evaluation Metrics of Different Models 

Models Precision Recall F1 Score AUC 

Swin Transformer 0.937 0.936 0.934 0.910 
MobileNetV2 0.811 0.798 0.795 0.918 
MobileNetV3 0.859 0.863 0.856 0.932 
ViT 0.626 0.474 0.478 0.520 
AF-Swin Transformer 0.981 0.979 0.980 0.999 

 

 The table 5 shows that the AF-Swin Transformer achieves an overall precision of 0.981 in grapevine 

leaf variety identification, which is higher than that of the Swin Transformer, MobileNetV2, MobileNetV3, and 

ViT by 4.4, 17, 12.2, and 35.5 percentage points, respectively. The Recall value for the AF-Swin Transformer 

is 0.979, exceeding that of the Swin Transformer, MobileNetV2, MobileNetV3, and ViT by 4.3, 18.1, 11.6, and 

50.5 percentage points, respectively. Additionally, the AF-Swin Transformer has the highest area under the 

ROC curve (AUC) among the models. The Focal Loss function reduces overfitting on simple samples 

compared to the cross-entropy loss function, enabling the model to concentrate on misclassified samples and 

effectively capture complex features and patterns. The AdamW optimizer maintains model stability during 

training and mitigates overfitting, particularly when handling complex datasets with subtle varietal differences. 

Therefore, the AF-Swin Transformer proposed in this study significantly outperforms other models in identifying 

grape leaf varieties and demonstrates clear advantages across various evaluation metrics. 

 

CONCLUSIONS 

 This study focuses on recognizing grapevine leaf varieties and proposed the AF-Swin Transformer model, 

which efficiently identifies different grapevine leaf varieties despite sample imbalance conditions. The main 

conclusions are as follows: 

 (1) Compared to four other deep learning models, the AF-Swin Transformer model demonstrates better 

performance in grapevine leaf variety identification. 

 (2) To address the issue of sample imbalance among different grape leaf varieties, the Swin Transformer 

model's loss function was replaced with the Focal Loss function. Additionally, the AdamW optimizer was 

introduced to improve the model's generalization capability. The results show that the AF-Swin Transformer 

model demonstrates good stability in identifying grape leaf varieties. 

 This study identified only 26 grape leaf varieties, and future research will expand to include more varieties 

and further optimize the model. Additionally, exploration of data augmentation techniques and transfer learning 

methods will be undertaken to achieve efficient recognition of various plant leaves. 
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